

BUJES DE FIJACIÓN POWER LOCK

INTRODUCCIÓN

Tekmatic, líder nacional en la fabricación de embragues y frenos industriales, cuenta con la mayor experiencia del mercado en cuanto a elementos cónicos de fijación. Desde el año 1995 en que hemos comenzado a distribuir los elementos de una importante empresa italiana, hasta la fecha, hemos conseguido la experiencia que nos ubica como líderes en el segmento de unidades de fijación.

Nuestro departamento técnico está preparado para poder darle una solución rápida, efectiva y económica a cualquier tipo de aplicación que se presente.

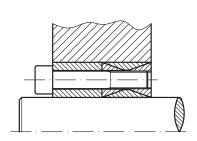
FUNCIONAMIENTO

Apretando en forma secuencial y cruzada los tornillos ubicados en la periferia de la unidad, se fuerza a las dos partes cónicas a expandirse radialmente, provocando una presión sobre los elementos a vincular, permitiendo fijarlos en la posición angular y axial deseada de modo absolutamente seguro.

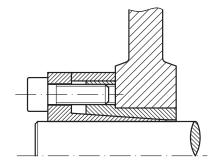
CAMPO DE APLICACIÓN

En todos aquellos casos en los cuales se emplean actualmente los métodos tradicionales como soldadura, chavetas paralelas, lengüetas, chavetas tangenciales, espinas cónicas, ejes cónicos, perfiles acanalados, montajes en caliente, etc.

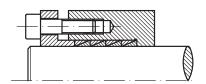
Algunos de los usos más comunes son; fijación de volantes, poleas para correas, piñones para cadena, engranajes, levas de disco excéntricas, discos de freno, acoplamientos, tambores de cinta transportadora, comandos para ascensores, en la construcción de grúas, compresores, motores Diesel, máquinas para la industria del vidrio y cerámica, máquinas para embalaje, prensas, molinos trituradores, etc.

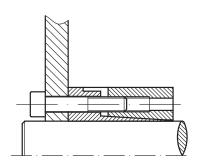

Tekmatic se reserva el derecho de hacer las modificaciones en sus productos que crea convenientes sin previa notificación. Los valores de límite elástico en pág. 3 son sólo a título de ejemplo, debiendo el cliente conocer dicho valor para el material que va a utilizar en su aplicación.

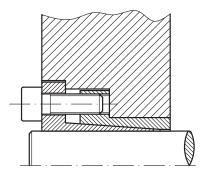
Los ejemplos de montaje son sólo a título ilustrativo.

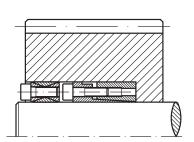

VENTAJAS DE TEK POWER LOCK

- Simplifica notablemente el montaje y elimina las operaciones de mecanizado para el alojamiento de la chaveta y el ajuste final
- No requieren herramental complejo ni personal especializado.
- Escaso mecanizado de las piezas
- Posibilidad de utilizar barras trefiladas comerciales para los ejes
- Eliminación de juegos de mecanizado
- Distribución de la presión sobre toda la superficie de contacto y no sólo sobre el flanco de la chaveta
- Ninguna tendencia a la rotura por entalla
- Aumento de la sección resistente del árbol
- Elevada resistencia a la torsión y mayor resistencia a la fatiga
- Posibilidad de aumentar las cargas axiales y la cupla transmitida disponiendo varias unidades cónicas en conjunto
- Protección contra sobrecargas
- Facilidad de posicionamiento axial y angular de las piezas a unir
- Ausencia de juegos
- Reducción de ruidos
- Desgaste nulo
- Protección contra la oxidación debido a la gran presión que se genera entre las superficies


EJEMPLOS DE MONTAJE

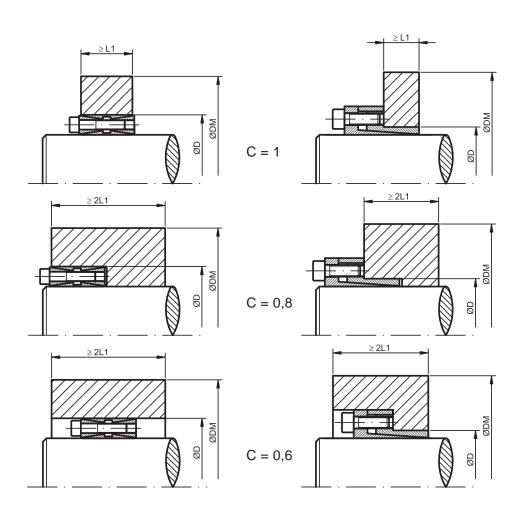

Fijación de un cubo mediante un TEK-200 con anillo centrador especial.


Fijación de un disco de freno mediante un TEK-110.


Aplicación de 4 elementos TEK-300 con espaciador.

Fijación de un piñón dentado mediante un elemento especial TEK-130 con anillo exterior no partido.

Aplicación del elemento TEK-110 en presencia de altas rpm.


Utilización de varios elementos de fijación en caso de tener un torque de transmisión muy alto.

CÁLCULO DEL DIÁMETRO MÍNIMO DE LA MAZA (DM), VÁLIDO PARA TODOS LOS MODELOS.

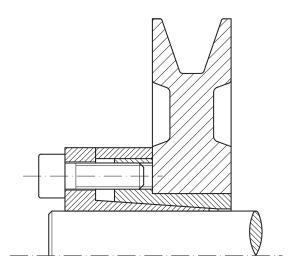
La presión de contacto pm existente entre el anillo exterior del cono de acoplamiento y la maza genera una solicitación.

Para el cálculo del diámetro mínimo de la maza Dm es válida la fórmula usada normalmente para cilindros huecos de gran espesor. En función de la longitud y de la forma de la maza respecto a la dimensión L1 del elemento de bloqueo, la solicitación real cambia. Debe considerarse un factor C en función del tipo de aplicación, según puede observarse en las figuras siguientes.

Para el cálculo del diámetro mínimo de la maza Dm es necesario aplicar la siguiente fórmula:

$Dm \ge D \times K$

Fiemplo:


Tenemos un eje de diámetro 60 mm, al cual debemos fijar un piñón dentado con maza de acero. Dado que el torque transmitido es alto, y no disponemos de un centrador, decidimos utilizar una unidad de fijación **TEK-130 60 x 90**. Por la forma de la maza del piñón a utilizar, vemos que se asemeja al tipo de aplicación $\bf C=1$, ya que el ancho de nuestra maza es = L1. Vamos a la tabla de página 7, columna $\bf pm$, y vemos que la presión superficial sobre la maza es de 135 N/mm². Vamos a la Tabla de Coeficiente K, entramos por la columna $\bf pm$, y vemos que el valor de $\bf K$ a utilizar es 1,62 (el acero de la maza tiene un límite elástico $\bf O_{02}$ = 300 N/mm²)

Dm ≥ 90 x 1,62 ≥ 145,8 mm

El diámetro mínimo de la maza del piñón debe ser igual o mayor a 145,8 mm para que la solicitación generada por la presión superficial sobre la maza no dañe al piñón dentado.

	Tabla del (Cooficient	o K
-	abia dei C		
	generada	σ ₀₂ Limite	e elástico
	la maza	N/n	nm²
pm	Tipo de	180	300
N/mm ²	aplicación C	Fundición	Aceros
	C = 0,6	1.25	1.12
60	C = 0,8	1.30	1.18
	C = 1,0	1.42	1.22
65	C = 0,6	1.25	1.13
	C = 0,8	1.35	1.20
	C = 1,0	1.45	1.24
	C = 0,6	1.26	1.15
70	C = 0,8	1.38	1.20
	C = 1,0	1.50	1.26
	C = 0,6	1.28	1.16
75	C = 0,8	1.42	1.22
	C = 1,0	1.55	1.30
90	C = 0,6	1.31	1.18
80	C = 0,8	1.45	1.24
	C = 1,0	1.61	1.31
85	C = 0,6	1.34	1.19
	C = 0,8	1.49	1.26
	C = 1,0	1.67	1.34
90	C = 0,6	1.36	1.20
	C = 0,8	1.53	1.28
	C = 1,0	1.73	1.36
	C = 0,6	1.39	1.21
95	C = 0,8	1.57	1.30
	C = 1,0	1.80	1.39
400	C = 0,6	1.41	1.22
100	C = 0,8	1.61	1.31
	C = 1,0	1.87	1.41
105	C = 0,6	1.44	1.24
	C = 0,8	1.66	1.33
	C = 1,0	1.95	1.44
110	C = 0,6	1.47	1.25
	C = 0,8	1.71	1.35
	C = 1,0	2.04	1.47
	C = 0,6	1.50	1.26
115	C = 0,8	1.76	1.37
	C = 1,0	2.13	1.50
100	C = 0,6	1.53	1.28
120	C = 0,8	1.81	1.39
	C = 1,0	2.24	1.53
125	C = 0,6	1.56	1.29
	C = 0,8	1.87	1.41
	C = 1,0	2.35 1.59	1.56
130	C = 0,6 C = 0,8	1.93	1.30 1.44
	C = 1,0	2.49	1.59
	C = 0,6	1.62	1.32
135	C = 0,8	2.00	1.46
	C = 1,0	2.65	1.62
140	C = 0,6	1.66	1.33
140	C = 0,8	2.07	1.48
	C = 1,0	2.83	1.66
145	C = 0,6	C = 0,6 1.69	1.35
	C = 0,8	C = 0,8 2.15	1.50
	C = 1,0	3.05	1.69
	C = 0,6	1.73	1.36
150	C = 0,8	2.24	1.53
	C = 1,0	3.32	1.73
	C = 0,6	1.77	1.38
155	C = 0,8	2.33	1.55
	C = 1,0	3.66	1.77
160	C = 0,6	1.81 2.43	1.39
100	C = 0,8 C = 1,0	4.12	1.58 1.81

Unidad de fijación *Autocentrante* **TEK-110**

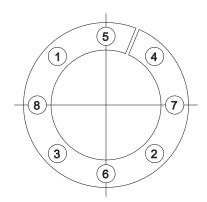
CARACTERISTICAS

Capacidad de transmisión de torque media alta Dimensionamiento radial mínimo Tiempo de montaje reducido Presión superficial muy baja

MONTAJE

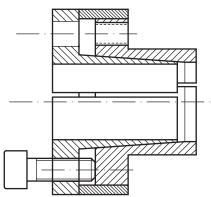
El torque es transmitido mediante la presión y la fricción entre las superficies. Esto se consigue mediante el apriete de los tornillos y el rozamiento de las superficies cónicas internas y cilíndricas externas. Por eso es que debe prestarse especial atención al estado de éstas superficies y de los tornillos.

Limpiar cuidadosamente las superficies de contacto del eje y del cubo. Aplicar una delgada película de aceite. **No deben** utilizarse lubricantes que contengan **bisulfuro de molibdeno** debido a que se produciría un notable descenso del coeficiente de fricción.


Colocar la unidad de bloqueo en el alojamiento del cubo y deslizar luego el conjunto sobre el eje.

Apretar en forma cruzada, según se indica en el dibujo siguiente hasta el valor Ma indicado en la tabla.

En el caso que el buje de fijación tenga una gran cantidad de tornillos, respetar el cruce de apriete en los cuatro cuadrantes.


Los dos tornillos adyacentes al corte deben ser apretados o liberados uno luego del otro para evitar deformaciones en el anillo. Los valores del momento torsor Mt y de la fuerza axial Fax indicados en la tabla se refieren a un montaje lubricado.

Es posible disminuir la cupla de apriete de los tornillos Ma hasta un 60% del valor indicado en la tabla, obteniéndose una disminución proporcional en los valores de Mt, Fax, pe y pm.

DESMONTAJE

Aflojar todos los tornillos de bloqueo e introducirlos en los agujeros de desmontaje, apretándolos de modo gradual y uniforme en cruz hasta que el cono posterior quede desbloqueado. Recordar, siempre que sea el caso, apretar en forma sucesiva los tornillos situados a los lados de la ranura. En caso de reutilización del equipo aplicar una película de aceite a los tornillos, agujeros y conos.

CENTRADO

La serie TEK-110 es autocentrante. La concentricidad entre la maza y el eje están en el orden de los 0.02 y 0.04mm dependiendo de la calidad del mecanizado del eje y cubo.

TOLERANCIA Y RUGOSIDAD

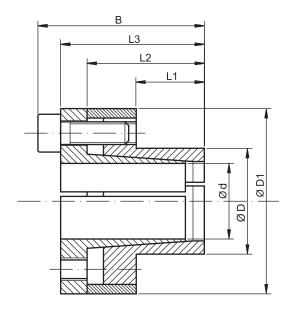
Una buena terminación de torno es suficiente. La rugosidad máxima admisible será Rt=16 um.

Las tolerancias máximas de mecanizado recomendadas son: eje h8

cubo H8.

DESPLAZAMIENTO AXIAL

Durante el apriete de los tornillos no se produce ningún corrimiento relativo entre maza y eje.


CALCULO DEL DIAMETRO MINIMO DE LA MAZA

Ver hoja 3 para realizar el cálculo del diámetro mínimo de la maza necesario para que no se produzcan deformaciones ni roturas en la misma.

Atención: las características constructivas y técnicas pueden variar sin previo aviso. En caso de estar proyectando una aplicación nueva o estar buscando un reemplazo, por favor consultar al departamento técnico de Tekmatic S.A.

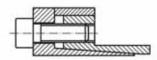
Unidad de fijación *Autocentrante* **TEK-110**

TEK-110					Torque	Fuerza axial	Presión superficial		Tornillos de apriete			
							Eje	Maza	DIN 912	Torque de apriete	Peso	
d x D	L1	L2	L3	В	D1	Mt	Fax	ре	pm	12.9	Ма	KG
mm	mm	mm	mm	mm	mm	Nm	KN	N/mm ²	N/mm ²	N x tipo	Nm	KG
14 x 23	14	23	26	30	38	68	10	130	80	4 x M4	5	0.1
18 x 26	18	31	38	44	47	200	22	180	125	4 x M6	17	0.24
19 x 27	18	31	38	44	49	210	22	170	120	4 x M6	17	0.26
20 x 28	18	31	38	44	50	220	22	160	115	4 x M6	17	0.27
22 x 32	25	38	45	51	54	250	22	115	80	4 x M6	17	0.34
24 x 34	25	38	45	51	56	270	22	105	75	4 x M6	17	0.36
25 x 34	25	38	45	51	56	280	22	100	75	4 x M6	17	0.35
28 x 39	25	38	45	51	61	465	33	135	97	6 x M6	17	0.48
30 x 41	25	38	45	51	62	510	33	127	90	6 x M6	17	0.48
32 x 43	25	38	45	51	65	540	33	120	90	6 x M6	17	0.47
35 x 47	32	45	52	58	69	790	45	105	80	8 x M6	17	0.58
38 x 50	32	45	52	58	72	860	45	100	75	8 x M6	17	0.61
40 x 53	32	45	52	58	75	900	45	95	70	8 x M6	17	0.68
42 x 55	32	45	52	58	78	950	45	90	70	8 x M6	17	0.76
45 x 59	45	62	70	78	86	1890	84	110	85	8 x M8	41	1.2
48 x 62	45	62	70	78	87	2010	84	105	80	8 x M8	41	1.2
50 x 65	45	62	70	78	92	2100	84	100	75	8 x M8	41	1.4
55 x 71	55	72	80	88	98	2600	94	85	65	9 x M8	41	1.6
60 x 77	55	72	80	88	104	2840	94	75	60	9 x M8	41	1.8
65 x 84	55	72	80	88	111	3070	94	70	55	9 x M8	41	2.1
70 x 90	65	86	96	106	119	5250	150	90	70	9 x M10	83	3
75 x 95	65	86	96	106	126	5600	150	80	65	9 x M10	83	3
80 x 100	65	86	96	106	131	8020	200	100	80	12 x M10	83	3.5
85 x 106	65	86	96	106	137	8500	200	95	75	12 x M10	83	3.6
90 x 112	65	86	96	106	144	9000	200	90	75	12 x M10	83	3.9
95 x 120	65	86	96	106	149	11000	230	100	80	14 x M10	83	4.4
100 x 125	65	86	96	106	154	15000	300	120	95	18 x M10	83	4.6
110 x 140	90	114	128	140	180	16000	290	80	65	12 x M12	145	8.7
120 x 155	90	114	128	140	198	17500	290	70	55	12 x M12	145	10.6
130 x 165	90	114	128	140	208	25000	384	90	70	16 x M12	145	11.3

Bujes de Fijación Internos

TEK110

Autocentrante


Capacidad de transmisión de torque media alta

Disponible de 14 mm a 150 mm de diámetro

Consultar por otras medidas

Dimensión radial reducida

Stock permanente

TEK130

Autocentrante

Capacidad de transmisión de torque alta

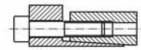
Disponible de 20 mm a 200 mm de diámetro

Consultar por otras medidas

Tiempo de montaje reducido

Stock permanente

TEK131


Autocentrante

Capacidad de transmisión de torque media

Disponible de 20 mm a 180 mm de diámetro

Presión superficial reducida

Modelo sólo bajo pedido

TEK132/139

Autocentrantes

Capacidad de transmisión de torque media alta

TEK 132: disponible de 20 mm a 200 mm de diámetro

TEK 139: disponible de 18 mm a 90 mm de diámetro

Modelo TEK-132: Stock permanente Modelo TEK-139: solo bajo pedido

TEK133/134

Autocentrantes

Capacidad de transmisión de torque media

TEK 133: disponible de 20 a 200 mm de diámetro

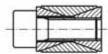
Modelo solo bajo pedido

TEK 134: disponible de 14 a 50 mm de diámetro

Stock permanente

TEK200

No autocentrante


Capacidad de transmisión de torque media

Disponible de 20 a 500 mm de diámetro

Consultar por otras medidas

Fácil desmontaje

Stock permanente

TEK250/250L

Capacidad de transmisión de torque baja

Disponible de 14 a 70 mm de diámetro

TEK 250: No autocentrante TEK 250L: Autocentrante Modelos sólo bajo pedido

Bujes de Fijación Internos

TEK300

No autocentrante

Capacidad de transmisión de torque baja

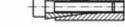
Disponible de 6 a 200 mm de diámetro

Consultar por otras medidas

Dimensión radial reducida

Stock permanente

TEK350


Autocentrante

Capacidad de transmisión de torque media alta

Disponible de 6 a 50 mm de diámetro

Dimensión radial reducida

Modelo sólo bajo pedido

TEK400/401

Autocentrante

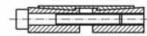
Capacidad de transmisión de torque muy alta

Disponible de 45 a 400 mm de diámetro

Presiones uniformes en el eje y en el cubo

Modelos sólo bajo pedido

TEK450/451


Autocentrante

Capacidad de transmisión de torque muy alta

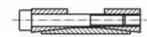
Disponible de 25 a 600 mm de diámetro

Versión económica

Stock permanente

Bujes de Fijación Externos

TEK500


Unión rigida

Capacidad de transmisión de torque media

Disponible de 17 a 80 mm de diámetro

Rápido montaje y desmontaje

Modelo sólo bajo pedido

TEK501/502/503

Autocentrantes

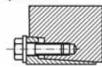
Capacidad de transmisión de torque elevada / muy elevada

Disponible de 14 a 480 mm de diámetro

Tiempo de montaje reducido

Modelos sólo bajo pedido

TEK622/623/681/682


Autocentrantes

Capacidad de transmisión de torque elevada / muy elevada

Disponible de 12 a 620 mm de diámetro

Tiempo de montaje reducido

Modelos sólo bajo pedido

Importa, distribuye y garantiza en la República Argentina

Tekmatic S.A.

Pje. Cuba 751 (1870) Avellaneda - Bs. As. - Argentina Tel. +54 11 4222 5040 - Fax. +54 11 4201 2478 www.tekmatic.com.ar - info@tekmatic.com.ar